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Abstract

Alternative test specimens for the determination of the fracture stress of brittle materials (eg. compacted powders)
are described and discussed, and a statistical approach to the processing of strength test data is outlined. © 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

An important characteristic of powder com-
pacts is that they are brittle, i.e. in contrast with a
ductile material (e.g. mild steel) fracture is not
preceded by significant permanent deformation.
For this reason, the simple tensile specimen widely
used in the strength testing of metals is not ideal
for these materials and is rarely, if ever, used.
(The principal difficulty is the avoidance of pre-
mature failure associated with stress increases due
to misalignment of the specimen in the loading
attachments or to contact effects of the attach-
ments themselves.) Consequently, alternative
specimens must be sought.

An essential feature of a satisfactory test speci-
men is that the geometry and loading must be
such that a calculable stress state prevails at the
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section where fracture occurs so that the fracture
stress can be readily calculated from the fracture
load. It is also desirable that the specimen is
simple and that the minimum is required by way
of shackles, grips, attachments etc. for loading. (It
is assumed that a satisfactory standard load-ap-
plying machine is available.) Several suitable spec-
imens are described and discussed below.

2. The beam

The beam is a geometrically simple specimen,
easily made and readily loaded. Load alignment
problems are eliminated by the use of a simple
fixture or jig in which the beam is supported on
and loaded through smooth hard cylindrical
rollers.

The beam specimen can have any cross-sec-
tional shape, but for convenience, sections with at
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least one plane of symmetry are preferred. The
rectangular cross-section is generally easy to make
as a compact though many brittle products are
available with hollow or solid cylindrical cross-
sections (e.g. glass tubing, quartz and silica ware,
fire—clay ware) or isosceles—triangular cross-sec-
tions. Typically, the length of the beam should be
at least ten times the cross-sectional dimension,
though stubbier ‘beams’ are tested (David and
Augsburger, 1974). With this proviso, the abso-
lute size of the specimen can range from some-
thing like a match-stick to a railway sleeper,
depending on the particle size of the powder, the
strength of the compact and the sensitivity and
load capacity of the test machine.

The relevant theory is developed in the stan-
dard textbooks (Case et al., 1993; Benham et al.,
1996); it is summarised here for reference. A
rectangular cross-section (b x d, breadth x depth)
is assumed for convenience. The modifications
necessary for singly symmetric or asymmetric
cross-sections are readily introduced.

The longitudinal stress ¢ due to a bending
moment M at a particular section of a beam (Fig.
1) is given by
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where y is the transverse co-ordinate measured in
the plane of bending (Fig. 1) and [ is the second
moment of area of the cross-section about the
neutral axis (N4; see Fig. 1). From Eq. (1) it can
be seen that ¢ varies linearly across the section
from a maximum tensile stress on the lower face
(in the case shown) through zero along the centre
line to a numerically equal compressive stress on
the upper face. (Linear elastic behaviour is as-
sumed. Shear effects on the section may modify
the overall stress distribution but will not affect
the surface maxima. Stresses in the z-direction are
taken as zero.)
It follows from Eq. (1) that

Md

Omax = 7 E

2

In practice, one of two alternative loading mod-
els is used; 3-point loading (Fig. 2a) or 4-point
loading (Fig. 2b). Fracture occurs when the ap-
plied load is such that the maximum stress o,
equals the tensile fracture stress of the material.
The relationships necessary for obtaining the ten-
sile fracture stress of the material from the total
applied load at fracture are tabulated below
(Table 1).

The possible effects of friction at the loading
and support points may require consideration. If
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Fig. 1. Beam bending.
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Fig. 2. Loading modes for bend tests. (a) 3-point, (b) 4-point.

suitable bearings are incorporated in the loading/
support rig, frictional effects can be practically
eliminated. A detailed treatment of these effects is
given in Stanley et al. (1976) and a ‘tandem’
testing arrangement in which such frictional ef-
fects are practically eliminated is described by
Stanley and Inanc (1984).

3. The ‘Brazilian’ disc

The simple plane-faced disc specimen subjected
to two diametrically opposed point loads (Fig. 3)

Table 1
Formulae for use with beam specimens

i _ 2P
P Ox * 1ro7
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=
—

Fig. 3. The ‘Brazilian’ disc.

is widely used for the determination of the tensile
fracture stress of brittle compacts (Fell and New-
ton, 1970). The test was devised originally by two
Brazilian engineers (Carneiro and Barcellos, 1953)
and is referred to as the ‘indirect’ tensile test—the
adjective ‘indirect’ arising presumably to cover the
apparent anomaly of deriving the tensile fracture
stress from compressive loading. Again, there are
no significant manufacturing or loading problems.
The ratio of specimen thickness to diameter is
usually within the 0.25-0.5 range. The size range
is governed by the factors mentioned above for
the beam specimen, with 10 mm or possibly some-
what less as a lower limit. For the test, the
specimen is simply placed between the two paral-
lel flat platens of a conventional test machine with
no need for elaborate fixtures or grips.

Rectangular section

Solid circular section

3-point loading

4-point loading

3-point loading 4-point loading

M, wi

max T Wa
3 2
o 3 12
— W 3a W
2bd m W

wi Wa

4 2
lD“ £D4
64 64

81/ 16a
D3 ' D3 '

W, total applied load; W}, W at fracture; a, see Fig. 2(b); /, distance between supports (Fig. 2; not length of beam); b, breadth of
rectangular cross-section (Fig. 1); d, depth of rectangular cross-section (Fig. 1); D, diameter of solid circular cross-section; oy, tensile

fracture stress of material.
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A feature of this specimen is that there is a
complete analytical solution (Den Hartog, 1952)
for the stress state induced by the loads. (Depar-
tures from the analytical stress solution in the
immediate vicinity of the two points of load appli-
cation are usually of no consequence.) It tran-
spires that the loaded diameter of the specimen
experiences a transverse tensile stress, which is
uniform along the length of the diameter.

In terms of the load P, the diameter D, the
thickness ¢ and co-ordinates x and y (Fig. 3), the
stresses ¢, and o, along the vertical and horizon-
tal diameters of the specimen are:

Vertical diameter:

o= % 3.1)
ay=% [1 —fo:yz} (3.2)
Horizontal diameter:

. [1 —(01614:1)} (3.3)
aF% [1 —w:ﬂ;z)z] (3.4)

Stresses normal to the plane of the specimen are
assumed to be zero unless the specimen thickness
is comparable with or greater than the diameter.
Although the compressive stresses (indicated by a
minus sign) are generally considerably higher than
the tensile stresses, the ratio of tensile to compres-
sive strength of these materials is such that frac-
ture usually occurs along the vertical diameter as
a result of the uniform tensile stress 2P/nDt act-
ing normal to that diameter. Consequently, for
such fractures, the tensile fracture stress o; is
readily obtained from the fracture load P; as
2P¢/nDt.

Anomalous results can be obtained from this
test when the material is relatively soft or when
the shear strength of the material is relatively low.
Various adaptations have been studied, including
the effect of distributed loading (Hondros, 1959)
and the use of shaped platens (or ‘anvils’) (Awaji
and Sato, 1979). It is important to note a signifi-

cant distinction between the tensile fracture stress
obtained from the beam test and that obtained
from the Brazilian disc test; the former pertains to
a strictly uniaxial stress state whilst the latter is
associated with a transverse compressive stress
considerably greater than the tensile stress. As a
generalisation, it can be said (see later) that the
tensile fracture stress obtained from the beam test
(i.e. the uniaxial stress condition) will be greater
than that derived from the disc test (a biaxial
stress condition).

4. Disc with traverse loading

The plane disc specimen can be loaded in bend-
ing (Stanley and Sivill, 1978) to provide a useful
counterpart to the 3-point and 4-point beam spec-
imens. In this loading mode, the disc is uniformly
supported on a concentric circular ring and
loaded by either a point load at the centre (Fig.
4a) or via a second concentric ring (Fig. 4b). A
thickness to diameter ratio of the order 1 to 10 is
preferable; the design of a suitable specimen load-
ing jig is straightforward (Fig. 5).

a) L

b) C

Fig. 4. Disc bending. (a) Point-loaded, ring-supported, (b)
ring-loaded, ring-supported.
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Fig. 5. Disc loading jig.

Analytical stress solutions are available (Den
Hartog, 1952) for both forms of loading, but that
for the point-loaded disc can present difficulties
and the ring-loaded alternative is to be preferred.
Within the central portion of the ring-loaded,
ring-supported disc specimen (i.e. for r <r —see
Fig. 4b) there is a uniform equi-biaxial stress state
which varies linearly from tension on the lower
surface through zero on the mid-surface to com-
pression on the upper surface. The lower surface
tensile stress in the specimen is related to the
applied load W and the specimen dimensions (see
Fig. 4) by the expression

F2 g2 r
0=|:23HI;VZ(1—V)SZRZL+(1—V)IanSJ 4)
where v is the Poisson’s ratio (Case et al., 1993) of
the material. (Other symbols are defined in Fig.
4b.) Using this equation, the tensile fracture stress
oy 1s readily obtained from the fracture load W;
provided Poisson’s ratio is known or a value can
be assumed for it. (Commonly assumed values are
in the range 0.3-0.5.)

Again, the value of the tensile fracture stress
obtained from this test is not to be seen as strictly
equivalent to that obtained from beam tests or the
Brazilian disc test (see later); the value relates to
the equi-biaxial stress condition and is referred to
as the equi-biaxial tensile fracture stress.

The above ¢ — W equation is not over-sensitive
to small changes in Poisson’s ratio, but because of
the occurrence of v in the equation the ring-
loaded ring-supported test is perhaps more useful
in a comparative study where changes in the
fracture stress are required rather than absolute
values. The point-loaded ring-supported disc can
also be used in such studies. A related test mode,
in which the disc specimen is symmetrically sup-
ported on three balls and loaded centrally through
a fourth (the ‘four ball’ test), may also warrant
consideration in such work (Stanley, 1992).

5. Shear strength test

The conventional shear specimen takes the
form of a tube or solid cylindrical bar subjected to
a torque loading. This form of testing is not ideal
for a brittle material and an alternative has been
developed (Rabie, 1981) in which a beam speci-
men is used. The arrangement is shown schemati-
cally in Fig. 6. In practice, a simple jig may be
used. The specimen consists of a simple symmetri-
cally notched beam of rectangular cross-section.
The loading is such that the central section of the
specimen experiences zero bending moment but a
shear force of Wa/(I— a). As a result of the two
90° notches (with the notch depth equal to one
quarter of the full section depth, d) this shear
force is distributed across section A4 (see Fig. 6)
as a uniform shear stress of magnitude Wa/
[bd'(I — a)], where b is the breadth of the specimen
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and d' is the section depth between the notch
roots. The shear fracture stress 7; is thus readily
derived from the fracture load Wi

Experience has shown that, depending upon the
loading details, some specimen development may
be necessary to ensure that failure occurs in shear
rather than in bending. Nevertheless, this form of
testing has considerable advantages over torsion
testing and is becoming accepted as a valuable
alternative to it.

6. The ‘fracture envelope’ concept

The ‘fracture envelope’ representation of the
strength characteristics of a particular material
affords a rational basis for the comparison and
appraisal of the distinctive strength values ob-
tained from the four tests described above.

An element of material subjected to two inde-
pendent orthogonal ‘in-plane’ principal stresses,
o, and o, (Fig. 7a), is considered. A combination
of ¢, and o, which causes fracture can be repre-
sented as a point in a co-ordinate system with
Cartesian axes ¢, and o,.

The full range of such combinations repre-
sented in this way defines the ‘fracture envelope’
of the material. Possible forms of ‘fracture envel-
ope’ are shown schematically in Fig. 7(b) as the
polygon a b a ¢ d ¢ a or as the closed curve a b’
a ¢ d ¢ a. The basic feature of the ‘fracture
envelope’ is that stress states represented by
points within the envelope can be sustained by the

"

Rigid loading member

'—L.
i | ¢
. i Z—
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7 7 7 7
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{

Fig. 6. Shear strength test.
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Fig. 7. The ‘fracture envelope’. (a) biaxial stress state, (b)
possible forms, (¢) construction.

material without fracture, stress states represented
by points on the envelope will cause fracture and
stress represented by points outside the envelope
cannot be sustained by this material. An impor-
tant detail of the fracture envelope for an
isotropic brittle solid is that it is symmetrical
about the line PP (Fig. 7b); it is not, in general,
symmetrical about the line QQ, the strength in
compression being greater than that in tension.
Some generalisations have been proposed (Prid-
dle, 1969; Dukes, 1971; Stanley and Sivill, 1978)
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but the determination of the detailed shape of the
fracture envelope for a particular material re-
quires an extensive experimental study designed
so that g, and g, can be controlled independently
over a wide range of values. Fracture stress values
derived for a particular material from the tests
described above give a number of key points on
the fracture envelope (see Fig. 7(c) in which sym-
metry about PP is assumed):

1. Beam bending gives the uniaxial tensile frac-
ture stress and therefore defines point a on the
principal stress axis OA.

2. The Brazilian disc test gives a point in the
lower part of the tension—compression quad-
rant. The ‘x’ co-ordinate of the point is ob-
tained directly from the test. There is some
uncertainty in the ‘y’ co-ordinate, but it is at
least three times the ‘x’ co-ordinate. The point
can be positioned, somewhat arbitrarily, along
the line OF which has a slope of — 3.

3. The ring-loaded, ring-supported test provides
the equi-biaxial tensile fracture stress and
therefore defines point b on the symmetry line
PP.

4. The pure shear condition is equivalent to equal
and opposite principal stresses (each equal in
magnitude to the shear stress). The shear test
therefore defines the point ¢ along the line OQ
perpendicular to PP. Clearly, a complete defi-
nition of the envelope would require work in
the compression—compression quadrant.

The fracture envelope provides a valuable con-
ceptual aid in fracture studies. Developments for
anisotropic materials and three-dimensional stress
states are important.

7. Statistical treatment

It might be inferred from the foregoing that,
within the limits of acceptable experimental error,
an individual fracture stress value obtained from
one of the tests described above is definitive and
unique. This is not so.

Within a brittle material, there is a multitude of
microscopic structural and material defects in the
form of interstitial cavities, fractured particles,
inter-particular boundaries, etc. These defects act

as minute stress concentrations in the material
and as the applied load is increased, fracture will
initiate and propagate from one of them. Since
the defects are randomly distributed throughout
the material and are of random severity, there is
an inevitable inherent variability in the strength of
nominally identical brittle specimens over and
above that which may be present because of vari-
ations in composition or details of manufacture.
This variability requires that strength test results
for brittle materials are treated statistically; the
Weibull probability distribution (Weibull, 1951) is
usually used for this purpose.

The form of the distribution used (Stanley and
Newton, 1977) is

e GG s

where P, is the cumulative probability of failure
associated with the stress o, &; is the mean frac-
ture stress and m is the Weibull modulus of the
material. The term ((1/m)!) is the “y’ function of
((1/m) + 1) and is readily obtained from standard
tables (Dwight, 1961).

The Weibull modulus m is a reciprocal measure
of the strength variability of a brittle material and
is to be seen as an important material characteris-
tic, complementary to the fracture strength.

Plots of failure probability as a function of
normalised stress, derived from Eq. (5) for various
values of m, are shown in Fig. 8. It can be seen
that the smaller m, the ‘flatter’ the curve and the
greater the variability in strength. In view of this
inherent variability, it is essential that batches of
nominally identical specimens be tested rather
than individual specimens, so that good average
strength values and measures of the associated
‘spread’ or variability (i.e. the modulus m) can be
obtained.

The processing of the results from a batch of
nominally identical test specimens (28 discs of
a-lactose monohydrate B.P.) is described in detail
by Stanley and Newton (1977). Fig. 9 shows test
results for a typical batch for which the derived m
value was 9.8. The mean fracture stress &, is
readily obtained directly from the test data. Sev-
eral alternative ways of determining m from test
results are available (Kennerley et al., 1982); a
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convenient approximation gives m in terms of the
mean fracture stress (G;) and the Standard devia-
tion (s) of the test data:

m=12 (6)
S

A further consequence of the brittle nature of
powder compacts is that the mean fracture stress
of a batch of specimens is size-dependent.

The larger the specimen the more likely it is
that it will contain a flaw of a given severity and
consequently the smaller will be the mean fracture
stress of a batch of such specimens. The theoreti-
cal relationship between the mean fracture stresses
and volumes of two batches A and B of geometri-
cally similar specimens of different size is

% _ E 1/m (7)
G \Va

Some work (Stanley and Newton, 1977) indicates
that this relationship is not entirely adequate in
accounting for the size-dependence of tablet
strength.

Further developments of the Weibull-based
statistical treatment are described by Stanley et al.
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Fig. 8. Failure probability versus normalised stress.
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Fig. 9. Weibull plot for typical test batch.

(1976), Stanley and Newton (1977) and Kennerley
et al. (1982). Stanley and Karroum (1992) de-
scribe work in which several strength test speci-
mens for brittle materials are evaluated; graphite
was used in this work as a representative material.

8. Properties related to stiffness

Other possibly relevant mechanical properties,
relating to stiffness rather than strength, are
Young’s modulus (E), Poisson’s ratio (v) and the
shear modulus (G).

Young’s modulus is defined as the ratio of
stress (¢) to strain (¢) in a uniaxial stress system.
In terms of the increase in length (A/) of a simple
tensile specimen length /, cross-sectional area A,
subjected to a tensile force F

_Fl4
~AljI ®

However, since simple tensile testing is imprac-
ticable for the materials under consideration,
Young’s modulus is best obtained from deflection
measurements on a beam specimen.
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A 4-point loaded beam (Fig. 2b) is considered.
Expressions for the bending moment and the
maximum stress within the central position of the
beam have been given previously. An expression
for the surface tensile strain in the central portion
of the beam is available (Church, 1984), in terms
of o, the deflection of the midpoint of the beam
relative to the support points. From these expres-
sions, the following relationship for Young’s
modulus is derived:

W 6a <k2 % a2>

E=5r\s

8 * 2 + 3 ©)
(a and k are defined in Fig. 2b.)

E therefore is readily obtained from the gradi-
ent of the W (total load) versus ¢ (central deflec-
tion) plot for the 4-point beam.

Poisson’s ratio (v) is defined as (minus) the
ratio of the lateral strain to the longitudinal strain
in a simple tensile specimen. It is not easy to
determine Poisson’s ratio directly. A method has
been developed (Church, 1984) based on the mea-
surement of the central deflection of a ring-
loaded, ring-supported disc, but an indirect
determination involving the measurement of the
shear modulus (G, see below) is attractive. The
relevant relationship (Case et al., 1993) is

E

V:E—

1 (10)
from which v is readily obtained in terms of E and
G.

The shear modulus G is defined as the ratio of
shear stress to shear strain and the simplest load-
ing mode for test purposes is the torque loading
of a cylindrical bar (Fig. 10). In such a test, it is
readily shown (Case et al., 1993) that

T
]

Fig. 10. Torque loading of cylindrical bar.

321 T
G= i) (11)
where 7'is the applied torque, 0 the angle of twist,
[ the length of the bar and d the diameter. G is
obtained directly from the gradient of a plot of T’

versus 0.

9. Arbitrarily shaped compacts

It has been assumed in the foregoing that there
is freedom of choice in the shape and size of the
specimen. If it becomes necessary to test a com-
pact of a specified non-simple shape (e.g. capsule-
shaped, lozenge-shaped, convex-faced discs,
grooved discs) a different approach must be
adopted. Several possibilities are available. An
approximate analysis has been used in a study of
the fracture stress of capsule-shaped tablets (Stan-
ley and Newton, 1980) and the material strength
of double-convex aspirin tablets has been deter-
mined (Pitt et al., 1989a) using a non-dimensional
stress factor obtained from fracture tests on gyp-
sum compacts (Pitt et al., 1988; Stanley, 1991).
More generally, however, whilst the determina-
tion of the fracture load of a non-standard brittle
specimen under an agreed form of loading pre-
sents no problems, the derivation of the fracture
stress of the material requires that the stresses
induced in the compact by the applied load are
known; a stress analysis is required and it is
assumed that a simple analytical solution is not
available.

Numerical or experimental methods can be
used in these circumstances. The finite element
method (Astley, 1992) is a powerful numerical
technique in which the body is ‘idealised’ in the
form of a ‘mesh’ of elements; several packages are
commercially available for this purpose. An at-
tractive experimental approach is by way of the
three-dimensional photoelastic technique (Durelli
and Riley, 1965) (i.e. the ‘frozen-stress’ technique)
in which the stress distribution in a stress-birefrin-
gent model is deduced from the optical interfer-
ence fringes in the loaded model. The model has
to be geometrically similar to the compact; the
model material is usually Araldite. The necessary
experimental techniques are well established
(Stanley, 1977).
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(©)

Fig. 11. Photoelastic fringes in plane and grooved discs. (a) plane-faced disc; (b) plane-faced disk with horizontal groove; (c)
plane-faced disc with vertical groove.

Examples of such interference fringe patterns are vertical groove. Analysis of these patterns provides
shown in Figs. 11 and 12. Fig. 11 shows the detailed stress data for the grooved tablet. Fig. 12
photoelastic fringes in a disc subjected to diametri- shows the photoelastic fringes in a series of rectan-
cally opposed compressive loads, (a) with plane gular plates subjected to opposed in-plane com-

faces, (b) with a horizontal groove and (c) with a pressive loads. The variation of the maximum



P. Stanley / International Journal of Pharmaceutics 227 (2001) 2738 37

tensile stress in this series of rectangular plate
models as the width to height ratio is varied is
shown in Fig. 13.
Further photoelastic work on the doubly-con-
vex disk is described by Pitt et al. (1989D).
Having established the stress distribution in the
compact, in deriving the fracture stress from the

fracture load, careful regard must be given to the
effects of stress biaxiality, as outlined in Section 6.

10. Conclusion

A number of test specimens suitable for the
determination of the mechanical strength of com-

(b)

(©
Fig. 12. Photoelastic fringes in rectangular plates. a, width; b, height. (a) a/b=1.5, (b) a/b=1.0, (c) a/b=0.5.
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max

X\J/, ——

Fig. 13. Variation of maximum tensile stress with a/b.

pacted materials have been described and criti-
cally discussed. They include the beam, the
‘Brazilian’ disc and the disc subjected to axis-sym-
metrical bending; a shear strength specimen has
also been described. The ‘fracture envelope’ con-
cept has been introduced and a summary of a
statistical approach to the processing of test data
has been given. Test techniques for other relevant
mechanical properties have been outlined and ref-
erence has been made to alternative stress analysis
techniques for arbitrarily shaped compacts.
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